您当前所在位置: 爱上学习中小学教育小升初小升初数学2017小升初数学应用题161 -- 正文

2017小升初数学应用题161

[05-19 23:36:44]   来源:http://www.i3xuexi.com  小升初数学   阅读:9990

[导读] 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟? 解答:从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。

2017小升初数学应用题161,http://www.i3xuexi.com

    设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?

    解答:从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。

  由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。

  因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。


标签:小升初数学小升初数学试卷及答案小升初 - 小升初数学